Как проверить транзистор мультиметром?

Как проверить транзистор мультиметром | Для дома, для семьи

Здравствуйте уважаемые читатели сайта sesaga.ru. Сегодня хочу рассказать, как проверить исправность транзистора обычным мультиметром.

Хотя для этого существуют специальные пробники, и даже в самом мультиметре имеется гнездо для проверки транзисторов, но, на мой взгляд, все они не совсем практичны.

Вот чтобы подобрать пару транзисторов с одинаковым коэффициентом усиления (h21э) пробники вещь даже очень нужная. А для определения исправности достаточно будет и обыкновенного мультика.

Мы знаем, что транзистор имеет два p-n перехода, причем каждый переход можно представить в виде диода (полупроводника). Поэтому можно утверждать, что транзистор — это два диода включенных встречно, а точка их соединения будет являться «базой».

Отсюда получается, что один диод образован выводами, например, базы и коллектора, а другой диод выводами базы и эмиттера. Тогда нам будет достаточно проверить прямое и обратное сопротивление этих диодов, и если они исправны, значит, и транзистор работоспособен. Все очень просто.

Начнем с транзисторов структуры (проводимость) p-n-p. На принципиальных схемах структура транзисторов обозначается стрелкой эмиттерного перехода. Если стрелка направлена к базе, значит это структура p-n-p, а если от базы, значит это транзистор структуры n-p-n. Смотрите рисунок выше.

Так вот, чтобы открыть p-n-p транзистор, на вывод базы подается отрицательное напряжение (минус). Мультиметр переводим в режим измерения сопротивлений на предел «2000», можно в режиме «прозвонка» — не критично.

Минусовым щупом (черного цвета) садимся на вывод базы, а плюсовым (красного цвета) поочередно касаемся выводов коллектора и эмиттера — так называемые коллекторный и эмиттерный переходы. Если переходы целы, то их прямое сопротивление будет находиться в пределах 500 – 1200 Ом.

Теперь проверяем обратное сопротивление коллекторного и эмиттерного переходов.
Плюсовым щупом садимся на вывод базы, а минусовым касаемся выводов коллектора и эмиттера. На этот раз мультиметр должен показать большое сопротивление на обоих p-n переходах.

В данном случае на индикаторе высветилась «1», означающая, что для предела измерения «2000» величина сопротивления велика, и составляет более 2000 Ом. А это говорит о том, что коллекторный и эмиттерный переходы целы, а значит, наш транзистор исправен.

Таким способом можно проверять исправность транзистора и на печатной плате, не выпаивая его из схемы.

Конечно, встречаются схемы, где p-n переходы транзистора сильно зашунтированы низкоомными резисторами. Но это редкость. Если при измерении будет видно, что прямое и обратное сопротивление коллекторного или эмиттерного переходов слишком мало, тогда придется выпаять вывод базы.

Исправность транзисторов структуры n-p-n проверяется так же, только уже к базе подключается плюсовой щуп мультиметра.

Мы рассмотрели, как проверить исправный транзистор. А как понять, что транзистор неисправный?
Здесь тоже все просто. Если прямое и обратное сопротивление одного из p-n переходов бесконечно велико, т.е. на пределе измерения «2000» и выше мультиметр показывает «1», значит, этот переход находится в обрыве, и транзистор однозначно неисправен.

Вторая распространенная неисправность транзистора – это когда прямое и обратное сопротивления одного из p-n переходов равны нулю или около того. Это говорит о том, что переход пробит, и транзистор не годен.

И тут уважаемый читатель Вы меня спросите: — А где у этого транзистора находится база, коллектор и эмиттер. Я его вообще в первый раз вижу. И будете правы. А ведь действительно, где они? Как их определить? Значит, будем искать.

В первую очередь, нужно определить вывод базы.
Плюсовым щупом мультиметра садимся, например, на левый вывод транзистора, а минусовым касаемся среднего и правого выводов. При этом смотрим, какую величину сопротивления показывает мультиметр.

Между левым и средним выводами величина сопротивления составила «1», а между левым и правым мультиметр показал 816 Ом. На данном этапе это нам ничего не говорит. Идем дальше.
Плюсовым щупом садимся на средний вывод, а минусовым касаемся левого и правого.

Здесь результат измерения получился почти таким же, как и на рисунке выше. Между средним и левым величина сопротивления составила «1», а между средним и правым получилось 807 Ом. Тут опять ничего не ясно, поэтому идем дальше.

Теперь садимся плюсовым щупом на правый вывод, а минусовым касаемся среднего и левого выводов транзистора.

На рисунке видно, что величина сопротивления между правым-средним и правым-левым выводами одинаковая и составила бесконечность. То есть получается, что мы нашли и измерили обратное сопротивление обоих p-n переходов транзистора.

В принципе, уже можно смело утверждать, что вывод базы найден. Он оказался правым. Но нам еще надо определить, где у транзистора коллектор и эмиттер. Для этого измеряем прямое сопротивление переходов.

Минусовым щупом садимся на вывод базы, а плюсовым касаемся среднего и левого выводов.

Величина сопротивления на левой ножке транзистора составила 816 Ом – это эмиттер, а на средней 807 Ом – это коллектор.

Запомните! Величина сопротивления коллекторного перехода всегда будет меньше по отношению к эмиттерному. Т.е. вывод коллектора будет там, где сопротивление p-n перехода меньше, а эмиттера, где сопротивление p-n перехода больше.

Отсюда делаем вывод:

1. Транзистор структуры p-n-p; 2. Вывод базы находится с правой стороны; 3. Вывод коллектора в середине;

4. Вывод эмиттера – слева.

А если у Вас остались вопросы, то можно дополнительно посмотреть мой видеоролик о проверке обычных транзисторов мультиметром.

Ну и напоследок надо сказать, что транзисторы бывают малой, средней мощности и мощные. Так вот, у транзисторов средней мощности и мощных, вывод коллектора напрямую связан с корпусом и находится в середине между базой и эмиттером. Такие транзисторы устанавливаются на специальные радиаторы, предназначенные для отвода тепла от корпуса транзистора.

Зная расположение коллектора, базу и эмиттер определить будет легко.
Удачи!

Источник: https://sesaga.ru/kak-proverit-tranzistor-multimetrom.html

Как проверить различные типы транзисторов мультиметром?

Полупроводниковые элементы используются практически во всех электронных схемах. Те, кто называют их наиболее важными и самыми распространенными радиодеталями абсолютно правы.

Но любые компоненты не вечны, перегрузка по напряжению и току, нарушение температурного режима и другие факторы могут вывести их из строя.

Расскажем (не перегружая теорией), как проверить работоспособность различных типов транзисторов (npn, pnp, полярных и составных) пользуясь тестером или мультиметром.

С чего начать?

Прежде, чем проверить мультиметром любой элемент на исправность, будь то транзистор, тиристор, конденсатор или резистор, необходимо определить его тип и характеристики. Сделать это можно по маркировке.

Узнав ее, не составит труда найти техническое описание (даташит) на тематических сайтах. С его помощью мы узнаем тип, цоколевку, основные характеристики и другую полезную информацию, включая аналоги для замены.

Например, в телевизоре перестала работать развертка. Подозрение вызывает строчный транзистор с маркировкой D2499 (кстати, довольно распространенный случай). Найдя в интернете спецификацию (ее фрагмент показан на рисунке 2), мы получаем всю необходимую для тестирования информацию.

Рисунок 2. Фрагмент спецификации на 2SD2499

Большая вероятность, что найденный даташит будет на английском, ничего страшного, технический текст легко воспринимается даже без знания языка.

Определив тип и цоколевку, выпаиваем деталь и приступаем к проверке. Ниже приведены инструкции, с помощью которых мы будем тестировать наиболее распространенные полупроводниковые элементы.

Проверка биполярного транзистора мультиметром

Это наиболее распространенный компонент, например серии КТ315, КТ361 и т.д.

С тестированием данного типа проблем не возникнет, достаточно представить pn переход в как диод. Тогда структуры pnp и npn будут иметь вид двух встречно или обратно подключенных диодов со средней точкой (см. рис.3).

Рисунок 3. «Диодные аналоги» переходов pnp и npn

Присоединяем к мультиметру щупы, черный к «СОМ» (это будет минус), а красный к гнезду «VΩmA» (плюс). Включаем тестирующее устройство, переводим его в режим прозвонки или измерения сопротивления (достаточно установить предел 2кОм), и приступаем к тестированию. Начнем с pnp проводимости:

  1. Присоединяем черный щуп к выводу «Б», а красный (от гнезда «VΩmA») к ножке «Э». Смотрим на показания мультиметра, он должен отобразить величину сопротивления перехода. Нормальным считается диапазон от 0,6 кОм до 1,3 кОм.
  2. Таким же образом проводим измерения между выводами «Б» и «К». Показания должны быть в том же диапазоне.

Если при первом и/или втором измерении мультиметр отобразит минимальное сопротивление, значит в переходе(ах) пробой и деталь требует замены.

  1. Меняем полярность (красный и черный щуп) местами и повторяем измерения. Если электронный компонент исправный, отобразится сопротивление, стремящееся к минимальному значению. При показании «1» (измеряемая величина превышает возможности устройства), можно констатировать внутренний обрыв в цепи, следовательно, потребуется замена радиоэлемента.

Тестирование устройства обратной проводимости производится по такому же принципу, с небольшим изменением:

  1. Красный щуп подключаем к ножке «Б» и проверяем сопротивление черным щупом (прикасаясь к выводам «К» и «Э», поочередно), оно должно быть минимальным.
  2. Меняем полярность и повторяем измерения, мультиметр покажет сопротивление в диапазоне 0,6-1,3 кОм.

Отклонения от этих значений говорят о неисправности компонента.

Проверка работоспособности полевого транзистора

Этот тип полупроводниковых элементов также называют mosfet и моп компонентами. На рисунке 4 показано графическое обозначение n- и p-канальных полевиков в принципиальных схемах.

Рис 4. Полевые транзисторы (N- и P-канальный)

Для проверки этих устройств подключаем щупы к мультиметру, таким же образом, как и при тестировании биполярных полупроводников, и устанавливаем тип тестирования «прозвонка». Далее действуем по следующему алгоритму (для n-канального элемента):

  1. Касаемся черным проводом ножки «с», а красным – вывода «и». Отобразится сопротивление на встроенном диоде, запоминаем показание.
  2. Теперь необходимо «открыть» переход (получится только частично), для этого щуп с красным проводом соединяем с выводом «з».
  3. Повторяем измерение, проведенное в п. 1, показание изменится в меньшую сторону, что говорит о частичном «открытии» полевика.
  4. Теперь необходимо «закрыть» компонент, с этой целью соединяем отрицательный щуп (провод черного цвета) с ножкой «з».
  5. Повторяем действия п. 1, отобразится исходное значение, следовательно, произошло «закрытие», что говорит об исправности компонента.

Для тестирования элементов p-канального типа последовательность действий остается той же, за исключением полярности щупов, ее нужно поменять на противоположную.

Заметим, что биполярные элементы, у которых изолированный затвор (IGBT), тестируются также, как описано выше. На рисунке 5 показан компонент SC12850, относящийся к этому классу.

Рис 5. IGBT транзистор SC12850

Для тестирования необходимо выполнить те же действия, что и для полевого полупроводникового элемента, с учетом, что сток и исток последнего будут соответствовать коллектору и эмиттеру.

В некоторых случаях потенциала на щупах мультиметра может быть недостаточно (например, чтобы «открыть» мощный силовой транзистор), в такой ситуации понадобится дополнительное питание (хватит 12 вольт). Подключать его нужно через сопротивление 1500-2000 Ом.

Проверка составного транзистора

Такой полупроводниковый элемент еще называют «транзистор Дарлингтона», по сути это два элемента, собранные в одном корпусе. Для примера, на рисунке 6 показан фрагмент спецификации к КТ827А, где отображена эквивалентная схема его устройства.

Рис 6. Эквивалентная схема транзистора КТ827А

Проверить такой элемент мультиметром не получится, потребуется сделать простейший пробник, его схема показана на рисунке 7.

Рис. 7. Схема для проверки составного транзистора

Обозначение:

  • Т – тестируемый элемент, в нашем случае КТ827А.
  • Л – лампочка.
  • R – резистор, его номинал рассчитываем по формуле h21Э*U/I, то есть, умножаем величину входящего напряжения на минимальное значение коэффициента усиления (для КТ827A – 750), полученный результат делим на ток нагрузки. Допустим, мы используем лампочку от габаритных огней автомобиля мощностью 5 Вт, ток нагрузки составит 0,42 А (5/12). Следовательно, нам понадобится резистор на 21 кОм (750*12/0,42).
Читайте также:  Чем отличается рюмка от стопки

Тестирование производится следующим образом:

  1. Подключаем к базе плюс от источника, в результате должна засветиться лампочка.
  2. Подаем минус – лампочка гаснет.

Такой результат говорит о работоспособности радиодетали, при других результатах потребуется замена.

Как проверить однопереходной транзистор

В качестве примера приведем КТ117, фрагмент из его спецификации показан на рисунке 8.

Рис 8. КТ117, графическое изображение и эквивалентная схема

Проверка элемента осуществляется следующим образом:

Переводим мультиметр в режим прозвонки и проверяем сопротивление между ножками «Б1» и «Б2», если оно незначительное, можно констатировать пробой.

Как проверить транзистор мультиметром, не выпаивая их схемы?

Этот вопрос довольно актуальный, особенно в тех случаях, если необходимо тестировать целостность smd элементов. К сожалению, только биполярные транзисторы можно проверить мультиметром не выпаивая из платы. Но даже в этом случае нельзя быть уверенным в результате, поскольку не редки случаи, когда p-n переход элемента зашунтирован низкоомным сопротивлением.

Источник: https://www.asutpp.ru/kak-proverit-razlichnye-tipy-tranzistorov-multimetrom.html

Как проверить биполярный транзистор

Как проверить транзистор, если у вас при себе есть только мультиметр?

Транзистор…Блин, какое страшное слово! Думаю, у всех чайников транзистор ассоциируется с чем-то очень трудным и непонятным. Но, уверяю вас, мои дорогие чайники, ничего трудного нету в транзисторе. Давайте же для начала разберемся, что он вообще из себя представляет и как его можно проверить на работоспособность.

Сразу оговорюсь, в нашей статье мы будет проверять биполярные транзисторы. Что это значит? А значит это то, что эти транзисторы состоят из двух P-N переходов. P-N переходы, дырки, электроны бла бла бла… Ну нафиг! Нам это не надо знать, как там ведут себя электроны, а как дырки и тд и тп.

Просто знайте, если ток будет  течь через P-N переход, то он сможет течь только в одном направлении. Из P-N перехода сделаны все диоды. А как вы знаете, диод пропускает ток тольков в одном направлении, и не пропускает в другом направлении. То есть другими словами, в одном направлении сопротивление диода маленькое, а в другом — очень большое.

Это мы с вами видели в статье как проверить диод мультиметром    .

Биполярный  транзистор, как я уже сказал, состоит из двух P-N переходов. А в зависимости, как расставлены материалы P и N, так и называется транзистор. На рисунке ниже схематическое обозначение P-N-P транзистора:

Его выводы обозначаются, как эммитер, база и коллектор. Материал, который посередине, между двумя другими материалами, называется в транзисторе базой.

Эммитер и коллектор находятся по краям и состоят из одного какого либо одинакового материала.  В P-N-P транзисторе ток втекает в эммитер и собирается в коллекторе.  А ток базы регулирует ток в коллекторе. Все просто :-).

Схематическое обозначение P-N-P транзистора в схеме выглядит так:

где Э — это эмиттер, Б — база, К — коллектор.

Существует также другая разновидность биполярного транзистора  — N-P-N. Здесь уже материал P заключен между двумя материалами N.

Принцип его действия схож с P-N-P транзистором, просто здесь ток течет уже в другом направлении.

Вот его схематическое изображение на схемах

Так как диод состоит из одного P-N перехода, а транзистор из двух, то значит можно представить транзистор, как два диода! Эврика!

Теперь же мы с вами можем проверить транзистор,  проверяя эти два диода, из которых, грубо говоря, состоит транзистор.

Ну чтоже, давайте  на практике определим работоспособность нашего транзистора. А вот и наш пациент:

Внимательно читаем, что нам написали на транзисторе: С4106. Теперь залезаем в интернет и ищем документ-описание на этот транзистор. По-английски он называется datasheet. Прямо так и вбиваем в поисковике «C4106 datasheet». Имейте ввиду, что импортные транзисторы пишутся с английскими буквами.

Нас больше всего интересует распиновка контактов. То есть нам нужно узнать, какой вывод что из себя представляет. Для этого транзистора нам нужно узнать, где у него база, где эмиттер, а где коллектор. В этом и вся прелесть даташита.

А вот и схемка распиновки:

Теперь нам понятно, что первый вывод  — это база, второй вывод — это коллектор, ну а третий — эмиттер.

Возвращаемся к нашему рисуночку

Наш подопечный  — это N-P-N транзистор. Получается, если он здоров, то у нас будет маленькое падение напряжения в миллиВольтах, если мы приложим «плюс» к базе, а «минус» к коллектору или эммитеру.

А если мы приложим «минус» к базе , а «плюс» к коллектору или эмиттеру, то увидим единичку на мультике.

Начинаем проверять диоды транзистора, как мы это делали при проверке диодов в статье Как проверить диод мультиметром.

Ставим на прозвонку и начинаем мусолить наш транзистор. Для начала ставим «плюс» к базе, а «минус» к коллектору

Все ок, прямой P-N переход должен обладать небольшим падением напряжения для кремниевых транзисторов 0,5-0,7 Вольт, а для германиевых 0,3-0,4 Вольта. На фото 543 милиВольта или 0,54 Вольта.

Проверяем переход база-эммитер, поставив  на базу «плюс» , а на эммитер «минус».

Видим снова падение напряжения  прямого P-N перехода. Все ок.

Меняем щупы местами. Ставим «минус» на базу, а «плюс» на коллектор. Сейчас мы замеряем  обратное падение напряжения на P-N переходе.

Все ОК,  так как видим единичку.

Проверяем теперь обратное падение напряжения перехода база-эммитер.

Здесь у нас  мультик также показывает единичку. Значит можно дать диагноз транзистору —  здоров.

Давайте проверим еще один транзистор. Он подобен транзистору, который мы с Вами рассмотрели. Его распиновка (то есть положение и значение выводов)  такая же, как  у нашего первого героя. Также ставим мультик на прозвонку и цепляемя к нашему подопечному.

Нолики… Это не есть хорошо. Это говорит о том, что P-N переход пробит, а раз уж он пробит, то можно смело выкидывать такой транзистор в мусорку.

В заключении статьи, хотелось бы добавить,  что лучше всегда отыскивать даташит на проверяемый транзистор. Бывают так называемые составные транзисторы.

Что это значит? Это значит, что в одном конструктивном корпусе транзистора могут быть вмонтированы два или даже больше транзисторов или даже диоды наряду с транзистором вместе. Имейте также ввиду, что некоторые радиоэлементы выполняют, как транзисторы.

Это могут быть тиристоры, стабилизаторы или преобразователи напряжения или даже какая нибудь заморская микросхемка. Вот так-то! Не ленитесь отыскивать даташиты на проверяемые транзисторы.

Источник: https://www.ruselectronic.com/kak-provjerit-tranzistor-multimjetrom/

Как проверить транзистор мультиметром

Как проверить транзистор мультиметром. Перед началом ремонта электронного прибора или сборки схемы стоит убедиться в исправном состоянии всех элементов, которые будут устанавливаться.

Если используются новые детали, необходимо убедиться в их работоспособности. Транзистор является одним из главных составляющих элементов многих электросхем, поэтому его следует прозвонить в первую очередь.

Как проверить мультиметром транзистор подробно расскажет данная статья.

Проверка транзисторов — обязательный шаг при диагностике и ремонте микросхем

Что такое транзистор

Главным компонентом в любой электросхеме является транзистор, который под влиянием внешнего сигнала управляет током в электрической цепи. Транзисторы делятся на два вида: полевые и биполярные.

Транзистор один из основных компонентов микросхем и электрических схем

Биполярный транзистор имеет три вывода: база, эмиттер и коллектор. На базу подается ток небольшой величины, который вызывает изменение в зоне эмиттер-коллектор сопротивления, что приводит к изменению протекающего тока. Ток протекает в одном направлении, которое определяется типом перехода и соответствует полярности подключения.

Транзистор данного типа оснащен двумя p-n переходами. Когда в крайней области прибора преобладает электронная проводимость (n), а в средней — дырочная (p), то транзистор называется n-p-n (обратная проводимость). Если наоборот, тогда прибор именуется транзистором типа p-n-p (прямая проводимость).

Полевые транзисторы имеют характерные отличия от биполярных. Они оснащены двумя рабочими выводами — истоком и стоком и одним управляющим (затвором). В данном случае на затвор воздействует напряжение, а не ток, что характерно для биполярного типа.

Электрический ток проходит между истоком и стоком с определенной интенсивностью, которая зависит от сигнала. Этот сигнал формируется между затвором и истоком или затвором и стоком. Транзистор такого типа может быть с управляющим p-n переходом или с изолированным затвором.

В первом случае рабочие выводы подключаются к полупроводниковой пластине, которая может быть p- или n-типа.

Принцип работы полевого транзистора

Главной особенностью полевых транзисторов является то, что их управление обеспечивается не при помощи тока, а напряжения. Минимальное использование электроэнергии позволяет его применять в радиодеталях с тихими и компактными источниками питания. Такие устройства могут иметь разную полярность.

Как проверить мультиметром транзистор

Многие современные тестеры оснащены специализированными коннекторами, которые используются для проверки работоспособности радиодеталей, в том числе и транзисторов.

Чтобы определить рабочее состояние полупроводникового прибора, необходимо протестировать каждый его элемент. Биполярный транзистор имеет два р-n перехода в виде диодов (полупроводников), которые встречно подключены к базе. Отсюда один полупроводник образовывается выводами коллектора и базы, а другой эмиттера и базы.

Используя транзистор для сборки монтажной платы необходимо четко знать назначение каждого вывода. Неправильное размещение элемента может привести к его перегоранию. При помощи тестера можно узнать назначение каждого вывода.

Чтобы определить состояние транзистора, необходимо протестировать каждый его элемент

Важно! Данная процедура возможна лишь для исправного транзистора.

Для этого прибор переводится в режим измерения сопротивления на максимальный предел. Красным щупом следует коснуться левого контакта и измерить сопротивление на правом и среднем выводах. Например, на дисплее отобразились значения 1 и 817 Ом.

Затем красный щуп следует перенести на середину, и с помощью черного измерить сопротивления на правом и левом выводах. Здесь результат может быть: бесконечность и 806 Ом. Красный щуп перевести на правый контакт и произвести замеры оставшейся комбинации. Здесь в обоих случаях на дисплее отобразится значение 1 Ом.

Делая вывод из всех замеров, база располагается на правом выводе. Теперь для определения других выводов необходимо черный щуп установить на базу. На одном выводе показалось значение 817 Ом – это эмиттерный переход, другой соответствует 806 Ом, коллекторный переход.

Схема проверки транзисторов с помощью мультиметра

Важно! Сопротивление эмиттерного перехода всегда будет больше, чем коллекторного.

Как прозвонить мультиметром транзистор

Чтобы убедиться в исправном состоянии устройства достаточно узнать прямое и обратное сопротивление его полупроводников. Для этого тестер переводится в режим измерения сопротивления и устанавливается на предел 2000. Далее следует прозвонить каждую пару контактов в обоих направлениях. Так выполняется шесть измерений:

  • соединение «база-коллектор» должно проводить электрический ток в одном направлении;
  • соединение «база-эмиттер» проводит электрический ток в одном направлении;
  • соединение «эмиттер-коллектор» не проводит электрический ток в любом направлении.

Как прозванивать мультиметром транзисторы, проводимость которых p-n-p (стрелка эмиттерного перехода направлена к базе)? Для этого необходимо черным щупом прикоснуться к базе, а красным поочередно касаться эмиттерного и коллекторного переходов. Если они исправны, то на экране тестера будет отображаться прямое сопротивление 500-1200 Ом.

Точки проверки транзистора p-n-p

Для проверки обратного сопротивления красным щупом следует прикоснуться к базе, а черным поочередно к выводам эмиттера и коллектора. Теперь прибор должен показать на обоих переходах большое значение сопротивления, отобразив на экране «1». Значит, оба перехода исправны, а транзистор не поврежден.

Такая методика позволяет решить вопрос: как проверить мультиметром транзистор, не выпаивая его из платы. Это возможно благодаря тому, что переходы устройства не зашунтированы низкоомными резисторами. Однако, если в ходе замеров тестер будет показывать слишком маленькие значения прямого и обратного сопротивления эммитерного и коллекторного переходов, транзистор придется выпаять из схемы.

Читайте также:  Чем отличается герань от пеларгонии

Перед тем как проверить мультиметром n-p-n транзистор (стрелка эмиттерного перехода направлена от базы), красный щуп тестера для определения прямого сопротивления подключается к базе. Работоспособность устройства проверяется таким же методом, что и транзистор с проводимостью p-n-p.

О неисправности транзистора свидетельствует обрыв одного из переходов, где обнаружено большое значение прямого или обратного сопротивления. Если это значение равно 0, переход находится в обрыве и транзистор неисправен.

Принцип работы биполярного транзистора

Такая методика подходит исключительно для биполярных транзисторов. Поэтому перед проверкой необходимо убедиться, не относиться ли он к составному или полевому устройству. Далее необходимо проверить между эмиттером и коллектором сопротивление. Замыканий здесь быть не должно.

Если для сборки электрической схемы необходимо использовать транзистор, имеющий приближенный по величине тока коэффициент усиления, с помощью тестера можно определить необходимый элемент.

Для этого тестер переводится в режим hFE. Транзистор подключается в соответствующий для конкретного типа устройства разъем, расположенный на приборе.

На экране мультиметра должна отобразиться величина параметра h21.

Как проверить мультиметром тиристор? Он оснащен тремя p-n переходами, чем отличается от биполярного транзистора. Здесь структуры чередуются между собой на манер зебры.

Главных отличием его от транзистора является то, что режим после попадания управляющего импульса остается неизменным.

Тиристор будет оставаться открытым до того момента, пока ток в нем не упадет до определенного значения, которое называется током удержания. Использование тиристора позволяет собирать более экономичные электросхемы.

Схема проверки тиристора мультиметром

Мультиметр выставляется на шкалу измерения сопротивления в диапазон 2000 Ом. Для открытия тиристора черный щуп присоединяется к катоду, а красный к аноду.

Следует помнить, что тиристор может открываться положительным и отрицательным импульсом. Поэтому в обоих случаях сопротивление устройства будет меньше 1.

Тиристор остается открытым, если ток управляющего сигнала превышает порог удержания. Если ток меньше, то ключ закроется.

Как проверить мультиметром транзистор IGBT

Биполярный транзистор с изолированным затвором (IGBT) является трехэлектродным силовым полупроводниковым прибором, в котором по принципу каскадного включения соединены два транзистора в одной структуре: полевой и биполярный. Первый образует канал управления, а второй – силовой канал.

Чтобы проверить транзистор, мультиметр необходимо перевести в режим проверки полупроводников. После этого при помощи щупов измерить сопротивление между эмиттером и затвором в прямом и обратном направлении для выявления замыкания.

IGBT-транзисторы с напряжением коллектор-эмиттер

Теперь красный провод прибора соединить с эмиттером, а черным коснуться кратковременно затвора. Произойдет заряд затвора отрицательным напряжением, что позволит транзистору оставаться закрытым.

Источник: https://stopdacha.ru/kak-proverit-tranzistor-multimetrom.html

Как проверить транзистор мультиметром – сколько деталей, столько и способов

Современные электронные мультиметры имеют специализированные коннекторы для проверки различных радиодеталей, включая транзисторы.

Это удобно, однако, проверка не совсем корректная. Радиолюбители со стажем помнят, как проверить транзистор тестером со стрелочной индикацией. Техника проверки на цифровых приборах не изменилась. Для точного определения состояния полупроводникового прибора, каждые его элемент тестируется отдельно.

Классика вопроса: как проверить биполярный транзистор мультиметром

Этот популярный проводник выполняет две задачи:

  • Режим усиления сигнала. Получая команду на управляющие выводы, прибор дублирует форму сигнала на рабочих контактах, только с большей амплитудой;
  • режим ключа. Подобно водопроводному крану, полупроводник открывает или закрывает путь электрическому току по команде управляющего сигнала.

Полупроводниковые кристаллы соединены в корпусе, образуя p-n переходы. Такая же технология применяется в диодах. По сути – биполярный транзистор состоит из двух диодов, соединенных в одной точке одноименными выводами.
Чтобы понять, как проверить транзистор мультиметром, рассмотрим отличие pnp и npn структуры.

Так называемый «прямой» (см. фото)
С обратным переходом, как изображено на фото

Разумеется, если вы спаяете диоды так, как показано на условной схеме – транзистор не получится. Но с точки зрения проверки исправности – можно представить, что у вас обычные диоды в одном корпусе.

То есть, положив перед собой схему полупроводниковых переходов, вы легко определите не только исправность детали в целом, но и локализуете конкретный неисправный p-n переход. Это поможет понять причину поломки, ведь полупроводник работает не автономно, а в составе электросхемы.

Как проверить биполярный транзистор мультиметром — видео.

Популярное:  Как выбрать мультиметр – недорого и функционально

Возникает резонный вопрос: Как определить маркировку выводов транзистора, не имея каталога? Такая практика пригодится не только для проверки радиодеталей. При сборке монтажной платы, незнание конструкции транзистора приведет к его перегоранию.

С помощью мультиметра можно определить назначение выводов.

Мультиметр выставляем в режим измерения сопротивления, предел шкалы – 2000 Ом. Выводы прибора – красный плюс, черный минус. Транзистор располагаем любым удобным способом, выводу условно определяем как «левый», «средний», «правый».

Определение базы

Красный щуп на левый контакт, замеряем сопротивление на среднем и правом выводах. В нашем случае это значение «бесконечность» (на индикаторе «1»), и 816 Ом (типичное сопротивление исправного p-n перехода при прямом подключении). Фиксируем результат измерений.

Красный щуп на середину, производим замер левого и правого контактов. С «бесконечностью» все понятно, обращаем внимание на то, что вторая пара показала результат, отличный от первого измерения. Это нормально, эмиттерный и коллекторный переходы имеют разное сопротивление. Об этом позже.

Красный щуп на правый контакт, производим замеры оставшихся комбинаций. В обоих случаях получаем единичку, то есть «бесконечное» сопротивление.

При таком раскладе, база находится на правом выводе. Этих данных недостаточно для пользования деталью.

У производителей нет единого стандарта по расположению эмиттера и коллектора, поэтому определяем выводы самостоятельно.

Определение остальных выводов

Черный щуп на «базу», меряем сопротивление переходов. Одна ножка показала 807 Ом (это коллекторный переход), вторая – 816 Ом (эмиттерный переход).

Точно таким же способом производится проверка исправности биполярного транзистора. В ходе определения контактов, мы заодно проверили исправность детали. Если вам известно расположение выводов – проверяете переходы «база-эмиттер» и «база коллектор», меняя полярность щупов.

Популярное:  Как проверить аккумулятор мультиметром на работоспособность

При прямом подключении – вы увидите значения, аналогичные предыдущим замерам.

При обратном – сопротивление должно быть бесконечным. Если это не так – переходы относительно базы неисправны. Последняя проверка – переход «эмиттер-коллектор».

В обоих направлениях исправная деталь покажет бесконечное сопротивление.

Если в ходе тестирования вы получили именно такие результаты – ваш биполярный транзистор исправен.

Как проверить транзистор мультиметром не выпаивая

Прежде всего, проверьте расположение на монтажной плате остальных радиодеталей, относительно выводов транзистора. Иногда переходы шунтируются резисторами с небольшим сопротивлением.

Если при замерах переходов, сопротивление будет измеряться десятками Ом – транзистор придется выпаивать. Если шунтов нет – см. методику, описанную выше, проверить транзистор на плате не получится.

Как проверить полевой транзистор мультиметром

Полупроводниковые транзисторы – MOSFET (на слэнге радиолюбителей – «мосфеты»), имеют несколько иное расположение p-n переходов. Название выводов также отличается: «сток», «исток», «затвор». Тем не менее, методика проверки прекрасно моделируется диодными аналогиями.

Принципиальное отличие – канал между «истоком» и «стоком» в состоянии покоя имеет небольшую проводимость с фиксированным сопротивлением. Когда «мосфет» получает запирающее напряжение на «затворе», этот переход закрывается.

При проверке он принимается открытым (в случае, если транзистор исправен).

Проверить полевой транзистор с помощью тестера можно по такой же методике, что и биполярный. Прибор в положение «измерение сопротивления» с пределом 2000 Ом.

Сопротивление по линии «исток» «сток» проверяется в обе стороны. Значение должно быть в пределах 400-700 Ом, и немного отличаться при смене полярности.

Линия «исток» «затвор» должна иметь проводимость с аналогичным сопротивлением, но только в одном направлении. Такая же ситуация при проверке «сток» «затвор».

Проверить полевой транзистор мультиметром не выпаивая из схемы можно, если нет шунтирующих деталей. Определить их наличие можно визуально. Однако, «мосфеты» обычно окружены т.н. обвесом из управляющих элементов. Поэтому их проверку лучше проводить отдельно от схемы. P.S. Если ваш прибор стрелочный – проверка производится также точно. Метод проверки полевого транзистора от Чип и Дип — видео

Популярное:  Как правильно пользоваться мультиметромКак проверить транзистор мультиметром – сколько деталей, столько и способов Ссылка на основную публикацию

Источник: http://obinstrumente.ru/elektronika/multimetr/kak-proverit-tranzistor-multimetrom.html

Как проверить работоспособность разных видов биполярных транзисторов мультиметром?

Перед тем как собрать какую-то схему или начать ремонт электронного устройства необходимо убедиться в исправности элементов, которые будут установлены в схему. Даже если эти элементы новые, необходимо быть уверенным в их работоспособности. Обязательной проверке подлежат и такие распространенные элементы электронных схем как транзисторы.

Для проверки всех параметров транзисторов существуют сложные приборы. Но в некоторых случаях достаточно провести простую проверку и определить годность транзистора. Для такой проверки достаточно иметь мультиметр.

Виды транзисторов и их применение

В технике используются различные виды транзисторов – биполярные, полевые, составные, многоэмиттерные, фототранзисторы и тому подобные. В данном случае будут рассматриваться наиболее распространенные и простые — биполярные транзисторы.

Такой транзистор имеет 2 р-n перехода. Его можно представить как пластину с чередующимися слоями с разными типами проводимости.

Если в крайних областях полупроводникового прибора преобладает дырочная проводимость (p), а в средней – электронная проводимость (n), то прибор называется транзистор р-n-p. Если наоборот, то прибор называется транзистором типа n-p-n.

Для разных видов биполярных транзисторов меняется полярность источников питания, которые подключаются к нему в схемах.

Наличие в транзисторе двух переходов позволяет представить в упрощенном виде его эквивалентную схему как последовательное соединение двух диодов.

При этом для p-n-p прибора в эквивалентной схеме между собой соединены катоды диодов, а для n-p-n прибора – аноды диодов.

В соответствии с этими эквивалентными схемами и производится проверка биполярного транзистора мультиметром на исправность.

Порядок проверки устройства — следуем по инструкции

Процесс измерений состоит из следующих этапов:

  • проверка работы измерительного прибора;
  • определение типа транзистора;
  • измерение прямых сопротивлений эмиттерного и коллекторного переходов;
  • измерение обратных сопротивлений эмиттерного и коллекторного переходов;
  • оценка исправности транзистора.

Перед тем, как проверить биполярный транзистор мультиметром, необходимо убедиться в исправности измерительного прибора. Для этого вначале надо проверить индикатор заряда батареи мультиметра и, при необходимости, заменить батарею.

При проверке транзисторов важна будет полярность подключения. Надо учитывать, что у мультиметра на выводе «COM» имеется отрицательный полюс, а на выводе «VΩmA» – плюсовой.

Для определенности к выводу «COM» желательно подключить щуп черного цвета, а к выводу «VΩmA» -красного.

Чтобы к выводам транзистора подключить щупы мультиметра правильной полярности, необходимо определить тип прибора и маркировку его выводов. С этой целью необходимо обратиться к справочнику или найти описание транзистора в Интернете.

На следующем этапе проверки переключатель операций мультиметра устанавливается в положение измерения сопротивлений. Выбирается предел измерения в «2к».

Перед тем, как проверить pnp транзистор мультиметром, надо минусовой щуп подключить к базе устройства. Это позволит измерить прямые сопротивления переходов радиоэлемента типа p-n-p. Плюсовой щуп подключается по очереди к эмиттеру и коллектору. Если сопротивления переходов равны 500-1200 Ом, то эти переходы исправны.

При проверке обратных сопротивлений переходов к базе транзистора подключается плюсовой щуп, а минусовой по очереди подключается к эмиттеру и коллектору.

Если эти переходы исправны, то в обоих случаях фиксируется большое сопротивление.

Проверка npn транзистора мультиметром происходит по такой же методике, но при этом полярность подключаемых щупов меняется на противоположную. По результатам измерений определяется исправность транзистора:

  1. если измеренные прямое и обратное сопротивления перехода большие, то это значит, что в приборе имеется обрыв;
  2. если измеренные прямое и обратное сопротивления перехода малы, то это означает, что в приборе имеется пробой.
Читайте также:  Чем отличается лифчик от бюстгальтера

В обоих случаях транзистор является неисправным.

Оценка коэффициента усиления

Характеристики транзисторов обычно имеют большой разброс по величине. Иногда при сборке схемы требуется использовать транзисторы, у которых имеется близкий по величине коэффициент усиления по току. Мультиметр позволяет подобрать такие транзисторы. Для этого в нем имеется режим переключения «hFE» и специальный разъем для подключения выводов транзисторов 2 типов.

Подключив в разъем выводы транзистора соответствующего типа можно увидеть на экране величину параметра h21.

Выводы:

  1. С помощью мультиметра можно определить исправность биполярных транзисторов.
  2. Для проведения правильных измерений прямого и обратного сопротивлений переходов транзистора необходимо знать тип транзистора и маркировку его выводов.
  3. С помощью мультиметра можно подобрать транзисторы с желаемым коэффициентом усиления.

Видео о том, как проверить транзистор мультиметром

Источник: http://elektrik24.net/instrumentyi/izmeritelnyie/multimetr/kak-proverit-tranzistor.html

Проверка биполярного транзистора — Основы электроники

Приветствую всех любителей электроники, и сегодня в продолжение темы применение цифрового мультиметра мне хотелось бы рассказать, как проверить биполярный транзистор с помощью мультиметра.

Биполярный транзистор представляет собой полупроводниковый прибор, который предназначен для усиления сигналов. Так же транзистор может работать в ключевом режиме.

Транзистор состоит из двух p-n переходов, причем одна из областей проводимости является общей. Средняя общая область проводимости называется базой, крайние эмиттером и коллектором. Вследствие этого разделяют n-p-n и p-n-p транзисторы.

Итак, схематически биполярный транзистор можно представить следующим образом.

Рисунок 1. Схематическое представление транзистора а) n-p-n структуры; б) p-n-p структуры.

Для упрощения понимания вопроса p-n переходы можно представить в виде двух диодов, подключенных друг к другу одноименными электродами (в зависимости от типа транзистора).

Рисунок 2. Представление транзистора n-p-n структуры в виде эквивалента из двух диодов, включенных анодами друг к другу.

Рисунок 3. Представление транзистора p-n-p структуры в виде эквивалента из двух диодов, включенных катодами друг к другу.

Конечно же для лучшего понимания желательно изучить как работает p-n переход, а лучше как работает транзистор в целом. Здесь лишь скажу, что чтобы через p-n переход тек ток его необходимо включить в прямом направлении, то есть на n – область (для диода это катод) подать минус, а на p-область (анод).

Это я вам показывал в видео для статьи «Как пользоваться мультиметром» при проверке полупроводникового диода.

Так как мы представили транзистор в виде двух диодов, то, следовательно, для его проверки необходимо просто проверить исправность этих самых «виртуальных» диодов.

Итак, приступим к проверке транзистора структуры n-p-n. Таким образом, база транзистора соответствует p- области, коллектор и эмиттер — n-областям. Для начала переведем мультиметр в режим проверки диодов.

В этом режиме мультиметр будет показывать падение напряжения на p-n переходе в милливольтах. Падение напряжения на p-n переходе для кремниевых элементов должно быть 0,6 вольта, а для германиевых – 0,2-0,3 вольта.

Сначала включим p-n переходы транзистора в прямом направлении, для этого на базу транзистора подключим красный (плюс) щуп мультиметра, а на эмиттер черный (минус) щуп мультиметра. При этом на индикаторе должно высветиться значение падения напряжения на переходе база-эмиттер.

Далее проверяем переход база-коллектор. Для этого красный щуп оставляем на базе, а черный подключаем к коллектору, при этом прибор покажет падение напряжения на переходе.

Здесь необходимо отметить, что падение напряжения на переходе Б-К всегда будет меньше падения напряжения на переходе Б-Э. Это можно объяснить меньшим сопротивлением перехода Б-К по сравнению с переходом Б-Э, что является следствием того, что область проводимости коллектора имеет большую площадь по сравнению с эмиттером.

По этому признаку можно самостоятельно определить цоколевку транзистора, при отсутствии справочника.

Так, половина дела сделана, если переходы исправны, то вы увидите значения падения напряжения на них.

Теперь необходимо включить p-n переходы в обратном направлении, при этом мультиметр должен показать «1», что соответствует бесконечности.

Подключаем черный щуп на базу транзистора, красный на эмиттер, при этом мультиметр должен показать «1».

Теперь включаем в обратном направлении переход Б-К, результат должен быть аналогичным.

Осталось последняя проверка – переход эмиттер-коллектор. Подключаем красный щуп мультиметра к эмиттеру, черный к коллектору, если переходы не пробитые, то тестер должен показать «1».

Меняем полярность (красный-коллектор, черный— эмиттер) результат – «1».

Если в результате проверки вы обнаружите не соответствие данной методике, то это значит, что транзистор неисправен.

Эта методика подходит для проверки только биполярных транзисторов. Перед проверкой убедитесь, что транзистор не является полевым или составным.

Многие изложенным выше способом пытаются проверить именно составные транзисторы, путая их с биполярными (ведь по маркировки можно не правильно идентифицировать тип транзистора), что не является правильным решением. Правильно узнать тип транзистора можно только по справочнику.

При отсутствии режима проверки диодов в вашем мультиметра, осуществить проверку транзистора можно переключив мультиметр в режим измерения сопротивления на диапазон «2000». При этом методика проверки остается неизменной, за исключением того, что мультиметр будет показывать сопротивление p-n переходов.

А теперь по традиции поясняющий и дополняющий видеоролик по проверке транзистора:

Источник: http://www.sxemotehnika.ru/zhurnal/kak-proverit-tranzistor-multimetrom.html

Основные способы проверки транзистора

Транзистор – это очень важный элемент большинства радиосхем. Тем, кто решил заняться радиомоделированием, необходимо в первую очередь знать, как их проверять и какие устройства при этом использовать.

В биполярном транзисторе имеется в наличии 2 PN перехода. Выводы из него называют эмиттером, коллектором и базой.

Эмиттер и коллектор – это элементы, размещенные по краям, а база находится между ними, посередине.

Если рассматривать классическую схему движения тока, то сначала он входит в эмиттер, а затем накапливается в коллекторе. База необходима для того, чтобы регулировать ток в коллекторе.

Пошаговая инструкция проверки мультимером

Перед началом проверки, прежде всего определяется структура триодного устройства, которая обозначается стрелкой эмиттерного перехода. Когда направление стрелки указывает на базу, то это вариант PNP, направление в сторону, противоположную базе, обозначает NPN проводимость.

Проверка мультимером PNP транзистора состоит из таких последовательных операций:

  1. Проверяем обратное сопротивление, для этого присоединяем «плюсовой» щуп прибора к его базе.
  2. Тестируется эмиттерный переход, для этого «минусовой» щуп подключаем к эмиттеру.
  3. Для проверки коллектора перемещаем на него «минусовой» щуп.

Результаты этих измерений должны показать сопротивление в пределах значения «1».

Для проверки прямого сопротивления меняем щупы местами:

  1. «Минусовой» щуп прибора присоединяем к базе.
  2. «Плюсовой» щуп поочередно перемещаем от эмиттера к коллектору.
  3. На экране мультиметра показатели сопротивления должны составить от 500 до 1200 Ом.

Данные показания свидетельствуют о том, что переходы не нарушены, транзистор технически исправен.

Многие любители имеют сложности с определением базы, и соответственно коллектора или эмиттера. Некоторые советуют начинать определение базы независимо от типа структуры таким способом: попеременно подключая черный щуп мультиметра к первому электроду, а красный — поочередно ко второму и третьему.

База обнаружится тогда, когда на приборе начнет падать напряжение. Это означает, что найдена одна из пар транзистора – «база — эмиттер» или «база — коллектор». Далее необходимо определить расположение второй пары таким же образом. Общий электрод у этих пар и будет база.

Инструкция проверки тестером

Тестеры различаются по видам моделей:

  1. Существуют приборы, в которых конструкцией предусмотрены устройства, позволяющие измерить коэффициент усиления микротранзисторов малой мощности.
  2. Обычные тестеры позволяют осуществить проверку в режиме омметра.
  3. Цифровой тестер измеряет транзистор в режиме проверки диодов.

В любом из случаев существует стандартная инструкция:

  1. Прежде, чем начать проверку, необходимо снять заряд с затвора. Это делается так – буквально на несколько секунд заряд необходимо замкнуть с истоком.
  2. В случае, когда проверяется маломощный полевой транзистор, то перед тем, как взять его в руки, обязательно нужно снять статический заряд со своих рук. Это можно сделать, взявшись рукой за что-нибудь металлическое, имеющее заземление.
  3. При проверке стандартным тестером, необходимо в первую очередь определить сопротивление между стоком и истоком. В обоих направлениях оно не должно иметь особого различия. Величина сопротивления при исправном транзисторе будет небольшой.
  4. Следующий шаг – измерение сопротивления перехода, сначала прямое, затем обратное. Для этого необходимо подключить щупы тестера к затвору и стоку, а затем к затвору и истоку. Если сопротивление в обоих направлениях имеет разную величину, триодное устройство исправно.

Как проверить транзистор, не выпаивая из схемы

Схема пробника для проверки транзисторов: R1 20 кОм, С1 20 мкФ, Д2 Д7А — Ж.

Выпаивание из схемы определенного элемента сопряжено с некоторыми трудностями – по внешнему виду сложно определить, какое именно из них необходимо выпаивать.

Многие профессионалы для проверки транзистора непосредственно в гнезде предлагают использовать пробник. Этот прибор представляет собой блокинг-генератор, в котором роль активного элемента играет сама деталь, требующая проверки.

Система работы пробника со сложной схемой построена на включении 2 индикаторов, которые сообщают — пробита цепь, или нет. Варианты их изготовления широко представлены в интернете.

Последовательность действий при проверке транзисторов одним из таких приборов, следующая:

  1. Сначала тестируется исправный транзистор, с помощью которого проверяют, есть генерация тока, или нет. Если генерация есть, то продолжаем тестирование. При отсутствии генерации меняются местами выводы обмоток.
  2. Далее проверяется лампа Л1 на размыкание щупов. Лампочка должна гореть. В случае, если этого не происходит, меняются местами выводы любой из обмоток трансформатора.
  3. После этих процедур начинается непосредственная проверка прибором транзистора, который предположительно вышел из строя. К его выводам подключаются щупы.
  4. Переключатель устанавливается в положение PNP или NPN, включается питание.

Свечение лампы Л1 свидетельствует о пригодности проверяемого элемента схемы. Если же начинает гореть лампа Л2, значит есть какие-то неполадки (скорее всего пробит переход между коллектором и эмиттером);

В случае если не горит ни одна из ламп, то это признак того, что он вышел из строя.

Существуют также пробники с очень простыми схемами, которые перед началом работы не требуют никакой наладки. Они характеризуются очень малым током, который проходит через элемент, подлежащий тестированию. При этом, опасность его вывода из строя практически нулевая.

К такой категории относятся приборы, состоящие из батарейки и лампочки (или светодиода).

Для проверки нужно последовательно выполнить такие операции:

  1. Подключить к наиболее вероятному выходу базы один из щупов.
  2. Вторым щупом поочередно касаемся каждого из оставшихся двух выводов. Если в одном из подключений контакта нет, тогда произошла ошибка с выбором базы. Нужно начинать сначала с другой очередностью.
  3. Далее советуют проделать те же операции с другим щупом (поменять плюсовый на минусовый) на выбранной базе.
  4. Поочередное соединение базы щупами разных полярностей с коллектором и эмиттером в одном случае должно зафиксировать контакт, а в другом нет. Считается, что такой транзистор исправный.

Основные причины неисправности

Наиболее часто встречающиеся причины выхода из рабочего состояния триодного элемента в электронной схеме следующие:

  1. Обрыв перехода между составными частями.
  2. Пробой одного из переходов.
  3. Пробой участка коллектора или эмиттера.
  4. Утечка мощности под напряжением цепи.
  5. Видимое повреждение выводов.

Характерными внешними признаками такой поломки являются почернение детали, вспучивание, появление черного пятна. Поскольку эти изменения оболочки происходят только с мощными транзисторами, то вопрос диагностики маломощных остается актуальным.

Советы

  1. Существует множество способов определения неисправности, но для начала нужно разобраться в строении самого элемента, и четко понимать конструкционные особенности.
  2. Выбор прибора для проверки – это важный момент, касающийся качества результата. Поэтому при недостатке опыта не стоит ограничиваться подручными средствами.
  3. Проводя проверку, следует четко понимать причины выхода из строя тестируемой детали, чтобы не вернуться со временем к тому же состоянию неисправности бытовой электротехники.

Источник: http://slarkenergy.ru/oborudovanie/datchiki/kak-proveryat-tranzistor.html

Ссылка на основную публикацию