Чем отличается космос от вселенной

Что такое вселенная и космос

Вселенная – это фундаментальное понятие астрономии, на практике включающее в себя на данном этапе только часть материального мира, которую можно изучить современными естественнонаучными методами.

Сам термин «вселенная» подразумевает нечто, не имеющее границ, поэтому в любом случае, невозможно и конечное знание о нем.

Однако в 1915 году Эйнштейн опубликовал «теорию относительности», согласно которой Вселенная безгранична, но она конечна, и точно так же, как и любая сфера, не имеющая границ, обладает определенным объемом и площадью поверхности.

Иными словами, двигаясь из одной точки Вселенной, мы можем вернуться к исходной с поправками на четвертое измерение – время. Теория относительности будет «работать» до тех пор, пока, согласно другой теории – теории расширяющейся Вселенной, земляне смогут наблюдать (а точнее, выяснять при помощи электромагнитных космических излучений) галактические процессы.

Таким образом, человек, прошедший за последние две тысячи лет эволюцию представлений о космосе от геоцентрического до гелиоцентрического, снова вернулся назад, и поместил в центр Вселенной не Землю, конечно, а Млечный Путь, родную галактику.

Впрочем, если теория относительности верна и для других точек Вселенной, то, в конце концов, галактики остановят свой бег и по одной версии начнут сближение, чтобы рано или поздно это сжатие снова породило Большой взрыв, основным доказательством которого служит возникновение сил антигравитации на больших расстояниях, природа которых пока неизвестна.

По другой версии в тот миг, когда кинетическая энергия для разбега галактик закончится, наступит тепловая смерть, и Вселенная распадется на атомы, протоны-нейтроны, кварки и так, видимо, опять до бесконечности, хотя современная наука пока не может ответить, существуют ли частицы меньше кварков.

Кроме этого, в современной космологии одним из важнейших вопросов является и вопрос о форме Вселенной: является ли она пространственно-плоской (то есть применимы ли к ней законы евклидовой геометрии), или все-таки из-за локальных «складок», образующихся ввиду искажений пространства-времени от массивных объектов, она только близка к таковой.

И, наконец, еще одна группа вопросов, над которыми работают современные исследователи, занимающиеся проблемами происхождения Вселенной: не «родилась» ли Вселенная изначально вращающейся? Эта гипотеза опровергает теорию Большого Взрыва, согласно которой энергия сразу начала распространяться одинаково во все стороны.

Источник: https://www.kakprosto.ru/kak-817761-chto-takoe-vselennaya-i-kosmos

Чем отличается вселенная от космоса?

Вам интересно, чем отличается Космос от Вселенной?

Наши ученые совмещают эти два понятия воедино, но это не так.

Ответ, конечно же, я знаю. Но как мне его вам доказать, вот где проблема.

Вобщем ответ таков.

В нашей Галактике миллиарды солнечных систем. Этому Вы видимо мне поверите.

В нашей Вселенной миллиарды Галактик. Возможно, Что Вы и этому поверите.

Космос намного больше Вселенной. В нем находятся миллиарды Вселенных, похожих на нашу. Проверить это никто не сможет, так как нету такого телескопа, но поверить мне вам придется, но об этом позже.

Самих Космосов тоже миллиарды, и они находятся в субстанции, похожей на воду.

Теперь Вы можете продставить себе, гигантские масштабы количества планет и жизней на них. А ведь большинство Землян думают, что они единственные разумные существа. Размечтались!!! Но это уже не по теме.

По теме будет другое… Как я это все узнал?

Давно всем известно. Чтобы понять Вселенную, Человек должен сначала изучать себя. Но большинству исследователей не терпится изучать непознанное, и они не знают, как изучать себя, чтобы понять Вселенную.

Я изучаю себя, и постепенно мне открываются те темы и Знания, которые мне интересны.

Как я это делаю? Отвечаю. В медитации. Как я вам это докажу? А никак. Делайте тоже медитацию, изучайте себя, и Вам начнут открываться те истины, которые Вам наиболее интересны.

Сначала я, в медитации, узнал то, что написал Вам выше. Дальше я решил узнать все подробнее:

Для этого я выбрал время, чтобы мне не мешали домашние. Тоесть, ночь. Чтобы не уснуть в медитации, я с вечера с часик поспал. Чтобы войти в медитацию я вначале расслабился, полностью. Я находился в это время между сном и бодрствованием. Когда я перестал ощущать свое тело, я перешел к медитации.

Я решил расслабиться и слиться со Вселенной, чтобы лучше ощутить ее. Мысленно я начал «расти» до размеров Вселенной, и растворяться в ней. Верхняя часть моего тела растворилась полностью, а вот нижняя часть, таз и ноги, никак не хотели растворяться. Я понял, что для таких тонких энергий, как Вселенная, в моем теле еще остались грубые части, которые никак не желали растворяться.

Тогда я представил Вселенную, как стакан с чаем, а себя представил кусочками сахара. Я взял китайские палочки, и начал растворять сахар в стакане. Тоесть, себя во Вселенной. Через несколько минут мне это удалось. Я полностью растворился во Вселенной. Я как бы был самой Вселенной. Больше я ничего не чуствовал.

Потом я пожелал, чтобы Вселенная меня начала лечить от тех болезней, которые у меня еще имелись. Возможно, что Вселенная меня и лечила, но в течении около десяти минут, я ничего не почувствовал. Тогда я представил себе Космос, с его миллиардами Вселенных, и я растворился в нем. В Космосе я тоже пробыл около десяти минут. У меня было легкое ощущение защищенности и блаженства.

Дальше, я решил побывать в той субстанции, в которой находятся все Космосы. Я мысленно перешел в эту субстанцию, и начал в ней растворяться. Вдруг мне сделалось сначала неуютно, и сразу же очень нехорошо. Я моментально «выпрыгнул» из медитации. Выходит, что данная субстанция абсолютно не подходит для жизни, но в ней находятся все Космосы, как в колыбели, как рыбная икра в воде.

Значит защитная оболочка Космоса защищает нас от пагубных воздействий этой субстанции.

Ну вот так я все и исследую.

С уважением ко всем Вам Владимир.

Источник: http://www.bolshoyvopros.ru/questions/9572-chem-otlichaetsja-vselennaja-ot-kosmosa.html

КОСМОС, ВСЕЛЕННАЯ — В ЧЕМ РАЗНИЦА? | ОКНО В МИР

Позиция: 05h 40m, –02°, 27', расстояние от Земли: 1,600 св. лет; прибор/год: WFC3/IR, 2012.

Позиция: 13h 37m, –29°, 51', расстояние от Земли: 15,000,000 св.лет, прибор/год: WFC3/UVIS, 2009–2012.

Позиция: 18h 18m, –13°, 49', расстояние от Земли: 6,500 св.лет, прибор/год: WFC3/IR, 2014.

Книга называется Expanding Universe («Расширяющаяся Вселенная») и приурочена к 25-летию запуска Хаббла.

Фотографии Хаббла, опубликованные в этой книге, это не просто завораживающие дух изображения, это также возможность узнать больше об исследовании космоса.

В книге есть эссе от критика фотографий, интервью со специалистом, который рассказывает, как именно создаются эти снимки, а также два рассказа астронавтов о том, какую роль в изучении космоса играет этот уникальный телескоп. 

Позиция: 08h 13m, –34°, 34', расстояние от Земли: 6,500 св.лет, прибор/год: ACS/WFC, 2010.

Позиция: 09h 55m, +69° 40', расстояние от Земли: 12,000,000 св.лет, прибор/год: ACS/WFC, 2006.

Позиция: 18h 18m, –13°, 49', расстояние от Земли: 6,500 св.лет, прибор/год: WFC3/UVIS, 2014.

Благодаря тому, что телескоп находится в космосе, он может регистрировать излучение в инфракрасном диапазоне, что совершенно невозможно сделать с поверхности Земли.

Поэтому разрешающая способность Хаббла в 7—10 раз больше, чем у аналогичного телескопа, расположенного на поверхности нашей планеты.

Так, например, среди прочего, ученые впервые получили карты поверхности Плутона, узнали дополнительные данные о планетах вне солнечной системы, им удалось значительно продвинуться в изучении столь загадочных черных дыр в центрах галактик, а также, что кажется уж совсем невероятным, — смогли сформулировать современную космологическую модель и узнать более точный возраст Вселенной (13,7 млрд лет). 

Позиция: непостоянна, расстояние от Земли: 443,000,000 mi, прибор/год: WFPC2, 2007.

Позиция: 20h 27m, +37°, 22', расстояние от Земли: 2,000 св.лет, прибор/год: Subaru, Telescope, 1999; WFC3/UVIS, WFC3/IR, 2011.

Позиция: 18h 18m, –13°, 49', расстояние от Земли: 6,500 св.лет, прибор/год: ACS/WFC, 2004.

Позиция: 22h 35m, +33°, 57', расстояние от Земли: 290,000,000 св.лет, прибор/год: WFC3/UVIS, 2009.

Позиция: 09h 55m, +69° 03', расстояние от Земли: 11,600,000 св.лет, прибор/год: ACS/WFC, 2004-2006.

Позиция: 06h 41m, +09°, 25', расстояние от Земли: 2,500 св.лет, прибор/год: ACS/WFC, 2002.

Позиция: 05h 34m, +22°, 00', расстояние от Земли: 6,500 св.лет, прибор/год: WFPC2, 1999, 2000.

Источник: http://maxpark.com/community/4946/content/3373394

Что находится за пределами Вселенной? Устройство Вселенной. Тайны космоса :

Что находится за пределами Вселенной? Этот вопрос слишком сложный для человеческого понимания. Это связано с тем, что в самую первую очередь необходимо определить ее границы, а это далеко не просто.

Общепринятый ответ учитывает только наблюдаемую Вселенную. Согласно ему размеры определяются скоростью света, потому что возможно видеть только свет, который излучают или отражают объекты в космосе. Невозможно заглянуть дальше, чем наиболее отдаленный свет, который путешествует все время существования Вселенной.

Пространство продолжает увеличиваться, но все еще конечно. Его размер иногда упоминается как объем или сфера Хаббла. Человек во Вселенной, вероятно, никогда не сможет узнать, что за пределами ее границ. Так что для всех исследований это единственное пространство, с которым когда-либо придется взаимодействовать. По крайней мере, в ближайшее время.

Читайте также:  Как работает кредитная карта?

Величие

Всем известно, что Вселенная велика. На сколько миллионов световых лет она простирается?

Астрономы тщательно изучают космическое излучение микроволнового фона — послесвечения Большого взрыва. Они ищут связь между тем, что происходит на одной стороне неба, и тем, что на другой.

И пока нет никаких доказательств, что там есть что-то общее. Это означает, что на протяжении 13,8 миллиардов лет в любом направлении Вселенная не повторяется.

Столько нужно времени свету, чтобы он достиг хотя бы видимого края этого пространства.

Нас все еще волнует вопрос, что находится за пределом Вселенной, которую можно наблюдать. Астрономы допускают, что космос бесконечен. «Вещество» в нем (энергия, галактики и т. д.) распределено точно таким же образом, как и в наблюдаемой Вселенной. Если это действительно так, тогда появляются разные аномалии того, что находится на краю.

За пределами объема Хаббла расположено не просто больше разных планет. Там можно найти вообще все, что только может существовать.

Если продвинуться достаточно далеко, можно даже найти другую солнечную систему с Землей, идентичной во всех отношениях, за исключением того, что у вас была на завтрак каша вместо яичницы.

Или завтрак отсутствовал вовсе. Или, допустим, вы встали пораньше и ограбили банк.

На самом деле космологи считают, что, если пройти достаточно далеко, то можно найти еще одну сферу Хаббла, которая совершенно идентична нашей. Большинство ученых считают, что известная нам Вселенная имеет границы. Что за их пределом, остается величайшей загадкой.

Космологический принцип

Это понятие означает, что независимо от места и направления наблюдателя, каждый видит одну и ту же картину Вселенной. Разумеется, это не относится к исследованиям меньшего масштаба. Такая однородность пространства вызвана равноправием всех его точек. Обнаружить это явление можно лишь в масштабах скопления галактик.

Что-то, сродни этому понятию было впервые предложено сэром Исааком Ньютоном в 1687 году. И впоследствии, в 20 веке, это же было подтверждено наблюдениями других ученых. Логично, если все возникло из одной точки Большого взрыва, а затем расширилось до Вселенной, то будет оставаться довольно однородным.

Расстояние, на котором можно наблюдать за космологическим принципом, чтобы найти это очевидное равномерное распределение материи, занимает примерно 300 миллионов световых лет от Земли.

Однако все изменилось в 1973 году. Тогда была обнаружена аномалия, нарушающая космологический принцип.

Великий аттрактор

Огромная концентрация массы обнаружилась на расстоянии 250 миллионов световых лет, близ созвездий Гидры и Центавра. Ее вес настолько велик, что его можно было бы сравнить с десятком тысяч масс Млечных Путей. Эта аномалия считается галактическим сверхскоплением.

Этот объект получил название Великий аттрактор. Его гравитационная сила настолько сильна, что воздействует на другие галактики и их скопления в течение нескольких сотен световых лет. Он долгое время оставался одной из самых больших тайн космоса.

В 1990 г. было обнаружено, что движение колоссальных скоплений галактик, называющихся Великим аттрактором, стремится к другой области космоса — за край Вселенной. Пока что за этим процессом можно наблюдать, хотя сама аномалия находится в «зоне избегания».

Темная энергия

Согласно Закону Хаббла, все галактики должны двигаться равномерно друг от друга, сохраняя космологический принцип. Однако в 2008 г. появилось новое открытие.

Wilkinson Microwave Anisotropy Probe (WMAP) обнаружил большую группу кластеров, которые двигались в одном направлении со скоростью до 600 миль в секунду. Все они держали путь к небольшой области неба между созвездиями Центавра и Паруса.

Этому нет никакой очевидной причины, и, поскольку это было необъяснимое явление, его назвали «темной энергией». Она вызвана чем-то вне пределов наблюдаемой Вселенной. В настоящее время есть только догадки о ее природе.

Если скопления галактик тянутся к колоссальной черной дыре, то их движение должно ускоряться. Темная энергия указывает на постоянную скорость космических тел в миллиарды световых лет.

Одна из возможных причин этого процесса — массивные структуры, что находятся за пределами Вселенной. Они оказывают огромное гравитационное влияние. Внутри наблюдаемой Вселенной нет гигантских структур с достаточной гравитационной тяжестью, чтобы вызвать это явление. Но это не значит, что они не могли существовать за пределами наблюдаемой области.

Это означало бы, что устройство Вселенной не является однородным. Что касается самих структур, они могут быть буквально любыми, от агрегатов материи и до энергии в масштабах, которые едва можно представить. Возможно даже, что это направляющие гравитационные силы из других Вселенных.

Бесконечные пузыри

Говорить о чем-то за пределами сферы Хаббла не совсем верно, так как это по-прежнему имеет идентичное устройство Метагалактики. «Неизвестность» имеет те же физические законы Вселенной и константы. Есть версия, что Большой взрыв вызвал появление пузырей в структуре пространства.

Сразу после него, до момента начала инфляции Вселенной, возникла своего рода «космическая пена», существующая как скопление «пузырей». Один из объектов этого вещества внезапно расширился, со временем став Вселенной, известной сегодня.

Но что получилось из других пузырей? Александр Кашлинский — глава команды НАСА, организации, которая обнаружила «темную энергию», — заявил: «Если отдалиться на достаточно большое расстояние, то можно увидеть структуру, которая находится вне пузыря, за пределами Вселенной. Эти структуры должны вызвать движение».

Таким образом, «темная энергия» воспринимается как первое свидетельство существования другой Вселенной, или даже «Мультивселенной».

Каждый пузырь — это область, которая перестала растягиваться вместе с остальной частью пространства. Она сформировала свою собственную Вселенную со своими особыми законами.

В этом сценарии пространство бесконечно, и каждый пузырь также не имеет границ. Даже если можно нарушить рубеж одного из них, пространство между ними все еще расширяется. Со временем будет невозможно добраться до следующего пузыря. Такое явление до сих пор остается одной из величайших тайн космоса.

Черная дыра

Теория, предложенная физиком Ли Смолином, предполагает, что каждый подобный космический объект в устройстве Метагалактики вызывает образование нового. Стоит только представить сколько черных дыр во Вселенной. Внутри каждой действуют физические законы, отличные от тех, что были у предшественника. Подобная гипотеза была впервые изложена в 1992 году в книге «Жизнь Космоса».

Звезды во всем мире, которые попадают в черные дыры, сжимаются до невероятно экстремальной плотности. В таких условиях это пространство взрывается и расширяется до собственной новой Вселенной, отличной от оригинала. Точка, где время останавливается внутри черной дыры, — это начало Большого взрыва новой Метагалактики.

Экстремальные условия внутри разрушенной черной дыры приводят к небольшим случайным изменениям основных физических сил и параметров в дочерней Вселенной. У каждого из них есть отличные от родительской характеристики и показатели.

Существование звезд является предпосылкой для формирования жизни. Это связано с тем, что углерод и другие сложные молекулы, обеспечивающие жизнь, создаются именно в них. Поэтому для формирования существ и Вселенной нужны одни и те же условия.

Критика космического естественного отбора как научной гипотезы заключается в отсутствии прямых доказательств на данном этапе. Но следует иметь в виду, что с точки зрения убеждений он не хуже, чем предлагаемые научные альтернативы. Нет подтверждений того, что находится за пределами Вселенной, будь это Мультивселенная, теория струн или циклическое пространство.

Множество параллельных Вселенных

Эта идея кажется чем-то, что мало относится к современной теоретической физике. Но мысль о существовании Мультиверса уже давно считается научной возможностью, хотя все еще вызывает активные дискуссии и деструктивные споры среди физиков. Этот вариант полностью разрушает представление о том, сколько Вселенных в космосе.

Важно иметь в виду, что Мультиверс не теория, а скорее следствие современного понимания теоретической физики. Это отличие имеет решающее значение. Никто не махнул рукой и не сказал: «Пусть будет Мультивселенная!». Эта идея была получена из текущих учений, таких как квантовая механика и теория струн.

Мультиверс и квантовая физика

Многим известен мысленный эксперимент «Кот Шредингера». Его суть заключается в том, что Эрвин Шредингер, австрийский физик-теоретик, указывал на несовершенство квантовой механики.

Ученый предлагает представить животное, которое поместили в закрытую коробку. Если открыть ее, можно узнать одно из двух состояний кота. Но пока коробка закрыта, животное либо живое, либо мертвое. Это доказывает то, что не существует состояния, сочетающего жизнь и смерть.

Все это кажется невозможным просто потому, что человеческое восприятие не может этого осознать.

Но это вполне реально в соответствии со странными правилами квантовой механики. Пространство всех возможностей в ней огромно. Математически квантовомеханическое состояние представляет собой сумму (или суперпозицию) всех возможных состояний. В случае «Кота Шредингера», эксперимент представляет собой суперпозицию «мертвых» и «живых» положений.

Но как это интерпретировать, чтобы оно имело какой-либо практический смысл? Популярный способ состоит в том, чтобы думать обо всех этих возможностях так, что единственным «объективно истинным» состоянием кота является — наблюдаемый. Однако можно также согласиться с тем, что эти возможности верны и все они существуют в разных Вселенных.

Теория струн

Это самая перспективная возможность объединить квантовую механику и гравитацию. Это трудно, потому что сила тяготения так же неописуема в небольших масштабах, как и атомы и субатомные частицы в рамках квантовой механики.

Читайте также:  Чем отличается каберне от мерло

Но теория струн, в которой говорится, что все фундаментальные частицы состоят из мономерных элементов, описывает сразу все известные силы природы. К ним относят гравитацию, электромагнетизм и ядерные силы.

Однако для математической теории струн требуется не менее десяти физических измерений. Мы можем наблюдать только четыре измерения: высоту, ширину, глубину и время. Поэтому дополнительные измерения от нас скрыты.

Чтобы иметь возможность использовать теорию для объяснения физических явлений, эти дополнительные исследования «уплотнены» и слишком малы в небольших масштабах.

Проблема или особенность теории струн заключается в том, что существует много способов произвести компактификацию. Каждая из них приводит к созданию Вселенной с различными физическими законами, такими как отличные массы электронов и константы силы тяжести. Однако есть также серьезные возражения против методологии компактификации. Поэтому проблема не совсем решена.

Но возникает очевидный вопрос: в какой из этих возможностей мы живем? Теория струн не обеспечивает механизм определения этого. Она делает ее бесполезной, поскольку не представляется возможным ее досконально протестировать. Но исследование края Вселенной превратило эту ошибку в особенность.

Последствия Большого взрыва

Во время самого раннего устройства Вселенной был период ускоренного расширения, называемый инфляцией. Первоначально она объясняла, почему сфера Хаббла почти однородна по температуре. Однако инфляция также предсказала спектр флуктуаций температуры вокруг этого равновесия, который позднее был подтвержден несколькими космическими аппаратами.

Хотя точные детали теории все еще горячо обсуждаются, инфляция широко принимается физиками. Однако следствие этой теории состоит в том, что должны быть другие объекты во Вселенной, которые все еще ускоряются. Из-за квантовых флуктуаций пространства-времени некоторые ее части никогда не достигнут конечного состояния. Это означает, что пространство будет вечно расширяться.

Этот механизм генерирует бесконечное количество Вселенных. Комбинируя этот сценарий с теорией струн, есть вероятность, что каждая из них обладает другой компактификацией дополнительных размеров и, следовательно, имеет разные физические законы Вселенной.

Согласно учению Мультиверс, предсказанному теорией струн и инфляцией, все Вселенные живут в одном и том же физическом пространстве и могут пересекаться. Они неизбежно должны сталкиваться, оставляя следы в космическом небе. Их характер имеет широкий спектр — от холодных или горячих точек на космическом микроволновом фоне до аномальных пустот в распределение галактик.

Поскольку столкновение с другими Вселенными должно происходить в определенном направлении, ожидается, что любые вмешательства нарушают однородность.

Некоторые ученые ищут их через аномалии в космическом микроволновом фоне, послесвечении Большого Взрыва. Другие в гравитационных волнах, которые рябят в пространстве-времени по мере прохождения массивных объектов. Эти волны могут непосредственно доказывать существование инфляции, которая в конечном итоге усиливает поддержку теории Мультивселенной.

Источник: https://www.syl.ru/article/364469/chto-nahoditsya-za-predelami-vselennoy-ustroystvo-vselennoy-taynyi-kosmosa

Существует ли у Вселенной центр?

Наша Вселенная началась с Большого Взрыва, но это не означает, что мы правильно ее себе нарисовали.

Большинство из нас представляют это как настоящий взрыв: когда все начинается с горячего и плотного, а потом остывает и охлаждается, пока отдельные фрагменты разлетаются все дальше и дальше. Но это же вообще не соответствует действительности.

Поэтому и рождается вопрос: а есть ли у Вселенной центр? Действительно ли космическое фоновое излучение одинаково удалено от нас, куда ни посмотри? Ведь если Вселенная расширяется, должно же это расширение было с чего-то начинаться?

Давайте на мгновение задумаемся о физике взрыва и какой была бы наша Вселенная, если бы с него началась.

Первые этапы взрыва во время ядерного испытания «Тринити», спустя 16 миллисекунд после взрыва. Вершина огненного шара на высоте 200 метров. 16 июля 1945 года

Взрыв начинается в точке и быстро расширяется наружу. Самый быстро движущийся материал выходит наружу быстрее всего, а значит и распространяется быстрее всего. Чем дальше вы от центра взрыва, тем меньше материала вас догонит.

Плотность энергии снижается по мере течения времени, но дальше от взрыва она падает быстрее, потому что на окрестностях энергетический материал более разреженный.

Независимо от того, где вы находитесь, вы всегда будете в состоянии — если вас не уничтожит — реконструировать центр взрыва.

Крупномасштабная структура Вселенной меняется с течением времени, поскольку крошечные дефекты растут и образуют первые звезды и галактики, а затем сливаются с образованием больших, современных галактик, которые мы видим сегодня. Чем дальше вы смотрите, тем моложе Вселенная.

Но это не та Вселенная, которую мы видим. Вселенная выглядит одинаково на больших и малых расстояниях: те же плотности, те же энергии, те же галактики и т. п.

Далекие объекты, которые удаляются от нас на больших скоростях, не совпадают возрастом с объектами, которые расположены ближе к нам и движутся с меньшими скоростями; они кажутся моложе. И на большом удалении объектов становится не меньше, а больше.

И если мы посмотрим на то, как движется все во Вселенной, мы увидим, что несмотря на то, что мы видим на десятки миллиардов световых лет, мы реконструировали центр прямо там, где находимся.

Сверхскопление Ланиакея, на котором положение Млечного Пути отмечено красным, представляет всего лишь одну миллиардную долю объема наблюдаемой Вселенной. Если Вселенная началась со взрыва, Млечный Путь был бы точно в центре.

Означает ли это, что мы, из всех триллионов галактик во Вселенной, оказались в центре Большого Взрыва? И что изначальный «взрыв» был настроен именно таким образом — с нерегулярными, неоднородными плотностями энергии, «точками отсчета» и загадочным свечением в 2,7 К — чтобы мы оказались в его центре? Как щедро было бы со стороны Вселенной настроить себя таким образом, чтобы мы оказались в этой невероятно нереалистичной точке на старте.

Во время взрыва в космосе внешний материал будет удаляться быстрее всего, а значит, именно он будет быстрее всего демонстрировать другие свойства, удаляясь от центра, поскольку будет быстрее терять энергию и плотность.

Но общая теория относительности подсказывает нам, что это не взрыв, а расширение. Вселенная началась с горячего, плотного состояния и расширялась именно ее ткань. Существует заблуждение, что это должно было начинаться с одной точки, но нет. Целая область имела такие свойства — заполненная веществом, энергией и пр. — и затем в действие вступала просто вселенская гравитация.

Эти свойства были одинаковыми везде и всюду — плотность, температура, число галактик и т. п. Но если бы мы могли это увидеть, мы обнаружили бы свидетельства развивающейся Вселенной.

Поскольку Большой Взрыв происходил сразу и везде определенное время назад в некой области пространства, а эта область — все, что мы можем видеть, если смотрим с нашей точки зрения — мы видим область пространства, которая не слишком отличается от нашей собственной позиции в прошлом. Это сложно понять, но вы постарайтесь.

Смотреть назад на большие космические расстояния — как смотреть назад во времени. Прошло 13,8 миллиарда лет с Большого Взрыва там, где мы сейчас есть, но Большой Взрыв также происходил и в других местах. Свет, путешествующий во времени от тех галактик, означает, что мы видим удаленные регионы, какими они были в прошлом.

Галактики, свет которых добирался до нас миллиард лет, видны для нас такими, какими они были миллиард лет назад; галактики, которые проявляются нам спустя десять миллиардов лет, выглядят такими, какими они были именно такое время назад.

13,8 миллиарда лет назад Вселенная была полна излучения, а не вещества, и когда впервые сформировались нейтральные атомы, это излучение никуда не делось, остыло и прошло через красное смещение из-за расширения Вселенной.

То, что мы видим как космический микроволновый фон, не только послесвечение Большого Взрыва, но его видно из любой точки Вселенной.

У Вселенной не обязательно будет центр. То, что мы называем «областью» пространства, в которой произошел Большой Взрыв, может быть и бесконечностью.

Если центр и есть, он может быть буквально где угодно, и мы об этом не знали бы, потому что наблюдаем недостаточно Вселенной, чтобы получить полную информацию.

Нам нужно было бы увидеть край, фундаментальную анизотропию (когда разные направления выглядят по-разному) в температурах и числах галактик, а наша Вселенная на самых больших масштабах кажется одинаковой везде и во всех направлениях.

Не существует места, с которого Вселенная начала расширяться, есть время, когда Вселенная начала расширяться. Именно это и являл собой Большой Взрыв: состояние, в которое перешла вся наблюдаемая Вселенная в определенный момент.

Именно поэтому вглядываться во всех направлениях означает смотреть назад во времени. Именно поэтому во всех направлениях Вселенная однородна.

Именно поэтому нашу историю космической эволюции можно проследить настолько, насколько наши обсерватории могут видеть.

Возможно, Вселенная имеет конечную форму и размер, но если это и так, то эта информация нам недоступна. Часть наблюдаемой нами Вселенной конечна, и эта информация в ней не заключена.

Если вы представляете себе Вселенную как воздушный шар, буханку хлеба или что-нибудь еще по аналогии, не забывайте, что мы можем получить доступ лишь к крошечной части настоящей Вселенной. Все, что мы видим, это ее небольшая часть.

Читайте также:  Чем отличается иллюзия от галлюцинации

И будь она конечной или бесконечной, она не перестает расширяться и разуплотняться.

Вселенная не расширяется в чем-то; она просто становится менее плотной.

Существует ли у Вселенной центр? Илья Хель

Источник: https://hi-news.ru/space/sushhestvuet-li-u-vselennoj-centr.html

С чего начинается космос и где кончается вселенная

С чего начинается космос и где кончается вселенная?  Как ученые определяют границы важных параметров в космическом пространстве. Все не так просто и  зависит от того, что считать космосом, сколько насчитывать Вселенных. Впрочем — ниже все подробно. И интересно.

«Официальная» граница между атмосферой и космосом – линия Кармана, проходящая на высоте около 100 км.

Ее выбрали не только из-за круглого числа: примерно на этой высоте плотность воздуха уже настолько мала, что ни один аппарат не может лететь, поддерживаясь одними лишь аэродинамическими силами.

Чтобы создать достаточную подъемную силу, потребуется развить первую космическую скорость. Такому аппарату крылья уже не нужны, поэтому именно на 100-километровой высоте проходит граница между аэронавтикой и астронавтикой.

Но воздушная оболочка планеты на высоте 100 км, конечно, не заканчивается. Внешняя ее часть – экзосфера – простирается вплоть до 10 тыс. км, хотя и состоит уже, в основном, из редких атомов водорода, способных легко покидать ее.

Солнечная система

Наверное, ни для кого не секрет, что пластиковые модели Солнечной системы, к которым мы так привыкли со школы, не показывают истинные расстояния между звездой и ее планетами. Школьная модель сделана так лишь для того, чтобы все планеты поместились на подставке. В действительности, все куда масштабнее.

Итак, центр нашей сис­темы – Солнце – звезда диаметром почти 1,4 млн. километров. Ближайшие к нему планеты – Меркурий, Венера, Земля и Марс – составляют внутреннюю область Солнечной системы.

Все они имеют малое количество спутников, состоят из твердых минералов и (за исключением Меркурия) имеют атмосферу.

Условно границу внутренней области Солнечной системы можно провести по Поясу астероидов, который находится между орбитами Марса и Юпитера, примерно в 2-3 раза дальше от Солнца, чем Земля.

Это царство гигантских планет и их многочисленных спутников. И первым из них является, конечно, громадный Юпитер, расположенный от Солнца примерно впятеро дальше, чем Земля. За ним следуют Сатурн, Уран и Нептун, расстояние до которого уже умопомрачительно велико – более 4,5 млрд. км. Отсюда до Солнца уже в 30 раз дальше, чем от Земли.

Если сжать Солнечную систему до размеров футбольного поля с Солнцем в качестве ворот, то Меркурий расположится в 2,5 м от крайней линии, Уран – у противоположных ворот, а Нептун – уже где-то на ближайшей парковке.

Самая удаленная галактика, которую астрономы сумели наблюдать с Земли – это z8_GND_5296, расположенная на расстоянии примерно 30 млрд. световых лет. Но самым далеким объектом, который возможно наблюдать в принципе, является реликтовое излучение, сохранившееся практически со времени Большого взрыва.

Ограниченная им сфера наблюдаемой Вселенной включает более 170 млрд. галактик. Представьте: если бы вдруг они превратились в горошины, ими можно было бы заполнить целый стадион «с горкой». Звезд здесь – сотни секстиллионов (тысяч миллиардов). Она охватывает пространство, которое тянется на 46 млрд. световых лет во всех направлениях. Но что лежит за ним – и где Вселенная заканчивается?

На самом деле, ответа на этот вопрос нет до сих пор: размеры всей Вселенной неизвестны – возможно, она вообще бесконечна. А может быть, за ее границами имеются другие Вселенные, но как они друг с другом соотносятся, что собой представляют – уже слишком туманная история, о которой мы как-нибудь еще расскажем.

Пояс, облако, сфера

Плутон, как известно, утратил статус полноценной планеты, перейдя в семейство карликов. К ним относятся вращающаяся неподалеку от него Эрида, Хаумеа, другие малые планеты и тела пояса Койпера.

Эта область исключительно далека и обширна, она тянется, начиная с 35‑ти расстояний от Земли до Солнца, и до 50-ти. Именно из пояса Койпера во внут­ренние области Солнечной системы прилетают короткопериодические кометы. Если вспомнить наше футбольное поле, то пояс Койпера находился бы в нескольких кварталах от него. Но и здесь до границ Солнечной системы еще далеко.

Облако Оорта пока остается местом гипотетическим: уж очень оно далеко. Однако существует немало косвенных свидетельств того, что где-то там, в 50-100 тыс.

раз дальше от Солнца, чем мы, находится обширное скопление ледяных объектов, откуда к нам прилетают долгопериодические кометы.

Это расстояние так велико, что составляет уже целый световой год – четверть пути до ближайшей звезды, а в нашей аналогии с футбольным полем – в тысячах километрах от ворот.

Но гравитационное влияние Солнца, пускай и слабое, простирается еще дальше: внешняя граница облака Оорта – сфера Хилла – находится на расстоянии двух световых лет.

Рисунок, иллюстрирующий предполагаемый вид облака Оорта

Гелиосфера и гелиопауза 

Не стоит забывать, что все эти границы являются довольно условными, как та же линия Кармана.

За такую условную границу Солнечной системы считают не облако Оорта, а область, в которой давление солнечного ветра уступает межзвездному веществу – край ее гелиосферы.

Первые признаки этого наблюдаются на расстоянии примерно в 90 раз большем от Солнца, чем орбита Земли, на так называемой границе ударной волны.

Окончательная остановка солнечного ветра должна происходить в гелиопаузе, уже в 130-ти таких дистанций.

В такую даль не добирались еще ни одни зонды, кроме американских Voyager-1 и Voyager-2, запущенных еще в 1970-х годах.

Это самые далекие на сегодня искусственно созданные объекты: в прошлом году аппараты пересекли границу ударной волны, и ученые с волнением следят за данными, которые зонды время от времени присылают домой на Землю.

Пузырь в рукаве

Все это – и Земля с нами, и Сатурн с кольцами, и ледяные кометы облака Оорта, и само Солнце – мчится в очень разреженном Местном межзвездном облаке, от влияния которого нас как раз и ограждает солнечный ветер: за пределы границы ударной волны облачные частицы практически не проникают.

На таких расстояниях пример с футбольным полем окончательно теряет удобство, и нам придется ограничиться более научными мерами длины – такими, как световой год.

Местное межзвездное облако тянется примерно на 30 световых лет, и через пару десятков тысяч лет мы его покинем, войдя в соседнее (и более обширное) G-облако, где сейчас находятся соседние с нами звезды – Альфа Центавра, Альтаир и другие.

Все эти облака появились в результате нескольких древних взрывов сверхновых, которые образовали Местный пузырь, в котором мы движемся уже минимум последние 5 млрд. лет.

Он тянется уже на 300 световых лет и входит в состав рукава Ориона – одного из нескольких рукавов Млечного пути.

Хотя он гораздо меньше других рукавов нашей спиральной галактики, его размеры на порядки больше Местного пузыря: более 11 тыс. световых лет в длину и 3,5 тыс. в толщину.

3D представление Местного пузыря (Белый) с примыкающим Местным межзвездным облаком (розовый) и частью Пузыря I (зеленый).

Млечный путь в своей группе

Расстояние от Солнца до центра нашей галактики составляет 26 тыс. световых лет, а диаметр всего Млечного пути достигает 100 тыс. световых лет. Мы с Солнцем остаемся на его периферии, вместе с соседними звездами вращаясь вокруг центра и описывая полный круг примерно за 200 – 240 млн. лет. Удивительно, но когда на Земле царили динозавры, мы были на противоположной стороне галактики!

К диску галактики подходят два мощных рукава – Магелланов поток, включающий газ, перетянутый Млечным путем от двух соседних карликовых галактик (Большого и Малого Магеллановых облаков), и поток Стрельца, куда входят звезды, «оторванные» от другой карликовой соседки. С нашей галактикой связаны и несколько небольших шаровых скоплений, а сама она входит в гравитационно связанную Местную группу галактик, где их насчитывается около полусотни.

Ближайшая к нам галактика – Туманность Андромеды. Она в несколько раз больше Млечного пути и содержит около триллиона звезд, находясь от нас на 2,5 млн. световых лет. Граница же Местной группы находится и вовсе на умопомрачительном удалении: диаметр ее оценивается в мегапарсек – чтобы преодолеть это расстояние, свету понадобится около 3,2 млн. лет.

Но и Местная группа бледнеет на фоне крупномасштабной структуры размерами около 200 млн. световых лет. Это – Местное сверхскопление галактик, куда входит около сотни таких групп и скоплений галактик, а также десятки тысяч отдельных галактик, вытянутых в длинные цепочки – филаменты. Дальше только – границы наблюдаемой Вселенной.

Вселенная и дальше?

На самом деле, ответа на этот вопрос нет до сих пор: размеры всей Вселенной неизвестны – возможно, она вообще бесконечна. А может быть, за ее границами имеются другие Вселенные, но как они друг с другом соотносятся, что собой представляют – уже слишком туманная история.

Источник

Источник: http://ogend.ru/nu/s-chego-nachinaetsya-kosmos-i-gde-konchaetsya-vselennaya.html

Ссылка на основную публикацию